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Vestnik Moskovskogo Universiteta by E. Po Aksenov
Seriya 1II,- Fizika i Asronomiya
No. 3, 36— 44, Moskva, 1965

SUMMARY

This paper provides new forms for the solution of the problem
of construction of int:rmediate orbits, which may be more practical
for the calculation of satellite‘s coordinates and more useful during

the indispensable expansion in series of the perturbation function.

g

INTRODUCTION. -

At construction of the analytical theory of AES motion it is
interesting to take for the intermediate orbit instead of the EKeplerian
ellipse a more complex curve, that would include the most substantial
perturbations conditioned by the distinction between the Earth's gra-
vitational field and the central. Such an orbit can be constructed on
the basis of the gencraligei theory of two fixed centers, inasmuch as
the force function of that problem differs from the terrestrial gravita-
tion potential only by the terms of second order of smallness relative
to Earth's contraction and admits a strict integration of the differen-
tial equations of motion [1, 2].

* O PROMEZHUTOCHNYKH ORBITAKH ISKUSSTVENNYKH SPUTNIKOV ZEMLI




Formulas, describing such an intermediate orbit, were obtained
by us earlier [3]. They express the satellite's conical coordinates as
explicit functions of a certain intermediate variable, which is, in its
turn, linked with time. However, the method of calculation of satellite

coordinates by such formulas is not unique, and possibly not the most

-convenient. That is why we have decided to provide in the present work

other forms of solutionof the problem considered. On the one hand, these
forns of solution may in some cases result more practical for the calcu-
lation of satellite coordinates, and they will, on the other hand, be
more useful at expansion of the perturbation function in series, which
must necessarily be carried out when accounting the perturbations from

other perturbing factors.

1. - STATEMENT OF THE PROBIELR.

Let us select a rectanrular system of coordinates Oxyes with
origin at mass center of the Barth in such a way that the axis Oz be
directed at the celestial pole, and the axis xy coincide with the Earth's
equatorial plane. Then the differential ecguation of satellite's interme-

diate motion will be written:

dx o d*y v diz

o
= —— 1
dn ax' dn oy ' odn a' ()

where the force function U is piven by the formula

=t L ! . @
V== {Vx‘+y'+(z-—icr WA TSI T, } @

in which £ is the gravitational constant, m is the Earth's mass,'i='1/?1',
¢ is a certain cocstant, numerically equal to ~ 210km.

As already noted, the equations (1) with the force function (2)are
rigorously integrated in quadratures. When integrating these equationms,
it is aprropriate to pass to new variables §, n, w, linked with x, y, z

by the correlations

Cx=VE+c)(1—nd)cosw,
y=VE+H(1—n)sinw, : 3)

z=1§n.




3.

Moreover, instead of the time t it is ar.rozriate to introduce a new
variable T according to the equality
dt = @ + ) dr. @

Formulas, expressing the spheroidal coordinates §, n, w through T,
and the relatjonship between the variable T and the time t wére obtained
by us in [3]. In the same work were iniroduced the elements of the inter-
mediate orbit. Before bringing forth all the formulas necessary here, let
us briefly recall the gqualitative pattern of satellite motion and the
geonetrical meaning of some of the orbit elements.

The motion of the satellite takes place in such a fashion thrat

a(l—g)<t<a(l +e¢),
—s<n<+s<1, ©)
where a, e, 8 are coustants, determined by theinitial conditions. The
region, in which the satellite moves, constitutes a certain toroidal
space, bounded by two ellipsoids of revolution with minor semi-axes

a(l~e) and a (1l + e) and a hyperboloid of revolution, whose equation is

n+p B

c3(1—s3) c3s?
The major semi-axes of tie toundin~ ellipsoids are respectively equal to
V @(l—e)*+¢? and Va?(l+e)?+c2.  The constants a, e, 8, thus define

iuily the region of satellite motion, and therefore, it is practical
to use them for orbit elements.
According to the work [3], the variatles § 7, @ are expressed
through T in the following fashion:
= P (1 4 % cosp)
14 ecosy
n=s-sing,
~ (6)
w=arctg(cositge)+LQ,
Q =, + Co¥ + €2 5in 29 4-¢; sinP + ¢y 5in 29 +
+ Gy 5in 3¢ + ¢ sin 4y + G,
where o5 x, e, ¢, Co €3y Ch Cp C5 & aTe consiants, depending on the elements

a, e, 8, and c5 is an arbitrary integration constant.




Tet us introduce the parameter £ according to formula

—_
a(l—es)

Inasmuch as a (1 — e) is greater than the Earth's radius €< -.;-‘-'O- « That is
why all the constants, enterinr into the formula (6), may be expanded in
series by powers &€, Rejecting in the expansion the terms of the order 56,

we find [3] _
-P.= a(l —ee),

T=e{l +e*(1 —e?) (1 —Ds?) +e4 (1 — %) [3 — 1667 + 1458 — 263 (1 — s},
x = g2 {(1 — 25%) + e? [(3— 165 + 145%) —e2 (1 — 259},
o= —L2e=cosi{1 — %[(30—353’)+e’(2+ 33’)]}(1—e’).

-~

—— —",- ecos i {(2 +eh)+ i;’— [(24 — 565%) — (4 + 64s?) — et (2 + 33’)1}.
;= -—;2— et (l. —eYstcosi,

¢, = — 2ecosi {1 + —';’- [(4— 28s") —e* (6 + 73’)]}.

= _-ile’cosi{l—i;-[ll +e (1 +s’)]}.
?,:—iie’cosi@——s’),

o= -g—:—e‘cosi(2+s’),

[ = arc sin s.
where ‘ sin

As to the variables ¥ and ¥ , they are linked with the variable T

by the formulas
¢ = amlo, (T +¢5), k),

Y = am[oy (T + ¢,), ksl @

where ¢3 and e¢j are still two more arvitrary integration constants and
the modules k-, k2 and the constants &6y and 6, are determined from the

ecualities

oe/ee




Se

B =e* (1 —e?) s? {1 —4e? (1 —s?)},
B = ete'st — ete (1 — 105 + 115* + '), @

o =Vima(l=){1 + T3+ ey (1—s9—
— 219 +25"— 1159 + (6 + 288" — 349 + ¢4 (1 +2s‘—3s‘)]},
to= VIGT= 21— 2 (3 45—t — ®
-—;1 I(.9 - 725 + 64s*) + €*(2 — 405 4- 48s%) + e‘]}.

Therefore, the coorcinat:s of the satellite are certain combina-
tions of elliptical functions of T with small modules (of the order 1/30).

Formulas (3) — (9) will fully resolve the stated problem provided
we find a formula, by which T may be computed for any given moment of time
t. Indeed, if the elements of satellite's orbit are known, and if T is
known for the given t, ¥, n, w can be found with the aid of tables for
elliptical functions, and then, the rectangular coordinates of the satellite
can be comnuted with the help of formula (3).

However, for this purpose it is useful to have other formulas. Here
we shall take advantage of the circumstance, that for elliptical functions
there exist trironometric series, very rapidly converging for sufficiently

small values of their modules.

2. - EXPANSIONS FOR @ AND V..

For am ( A, k) we have the followinr~ well known expression

am (ky &) = %(7'—4-2—:— qum sin ";‘f (10)

vhere ! |
K= %{x'—l- (—;-)’k=+(-i‘,-:%)’k4+ } (1)
=._l’:_{1+§-+§—ik‘+...}. (12)

Rejecting the terms with kO, we shall find from formulas (10) — (12)

../00 -




~ - B B . o—, K. =
am (¥, k)—l+—8—(l+T)sm2L+—2§sm4k, (13)
where '
A= (1--‘_/9—_5_/;‘);7. (14)
4 64 :
Substituting in (13) and (14) Xy and k, in place of k, and then

replacing them by the exvwressions (8) and (9), we shall obtain

¢ =u+t _;i—-;—e*a—eﬁs'{l—- 32’—(8—93’,—1— e’s’)}sin2u, - (15).

Y=uv+4 -é— g’? {s’— ';—’(2 — 20s? 4 225% — 3e’s‘)} sin2g, (16)
where -

u=n{rf}-(nlc,——’2‘-). v="0ny(T+ ¢, (17)

with, at the sawme tinme,
m=Vma(T=e{1+ Z16—75) + ' (2 —s9] —
_®[lg_32_ 43 __ 165 {1 n
8[(9 35— s‘)+e’(ﬁ+348’ : s')+e'(1-rs'—Ts4)]}.
nz=mea(l—e*){l—-—;’—[(6—-8s')-—e'(2-s’)1—

- fsi [(9 — 725? + 645%) — e? (235% — 30s*) + et (1 st —’SL )]
Note, that in formulas (15) and (16) all terms with amplitudes

of the order 10"8 and above were rejected.

1 —
3. = EXPAISITIY for 7,7 and @

For Jacobi elliptical functions we have
1

oo P —
A=-"13.9 " —1) A
T il et A sin@e—1) o @0
v 2n - S )
=B cos.(&—l)-gzl, @)
n=1

where K and q@ are cetermined by -the equalities (11) and (12).
That is why, preserving only the terms with amplitudes, greater

than 1079, we shall find
../..




k“, 4
sing = (l-;— + 5 k}) cosu—ii(2+——)c053u+ cos5u, (22)
"§ 2 9 >
cosPp= (l-—,—;ﬁ—f—gkg)cosv-}-—é—(l+T)cos3v+-2—5€-c055v. (23)
where u anc V¢ are given by formulas (17).
Subseguently, we have
2 ‘ .
cos2\p=——:—-+cos2v+—?—cos4v+'..., (24)
cosIp=cosIv4..., (25)
2 ‘ : -
sin2\p=sin2v+—:-sin4v+..., (26)
sindp =sindv 4 .... (28)
From the first formula (6) we find
-:— = Ay + A, cos P + Ay cos 2¢ -+ 4, cos 3y, (29)
where
p= a(l - ez)o

A=1+ —;— g% (1 —25?) + —-21—e‘e’[(3 — 165 + 145%) — 2 (1 — 25Y)],

= |
A=e{l— el -2s=)=}. (30)
Ay=— ~—;— e%? (1 —2s%) — -—;—z‘e’[(S — 165 + 14s%) ~ et (I— 2591,
A= -:—e‘e’(l — st

We rejected in formula (29) all the terms with amplitudes of the order £6

and higher.
Substituting the equalities (23), (24) and (25) into (29), we

shall finally find

—g— =a, + a; cosv + agcos 2v 4 d, cos 3v + a, cos 4v, (31)

where Go=1+ 2 e*(1—25) + %ﬁ [(24 — 1285 1125%) — ¢* (84 5* — 185Y],.

'./..



el — B2t &P r4g 80s%) — 7e%4 }, 32
al_e{x = etst — 2 ((48 — 965* + 80s) — e 1} (32)

o= ———;‘ezez(l —25%) — “‘2" [(3 — 167 + 145%) — 2 (1 — 254)],

= 2O 4 22 (6— 125t 4 1088 —e'sY),
&= T (6—12¢"+ )

ot = — ""}?’ (1 —25%).

Let us now substitute (Z22) into the seconié formmla (6). We then
shall o:ztain

M = by cos u + b, cos 3u, (33)
where
‘= 8 1.y & A2 ;:__ __‘z
b, s{1+ = (—eh) s — (1 — )5 (64 (1 —s) — 7531 en},
b,=—s3{—f;—(1—e=)—%(1—e=)—[8(1—s*)-s=(1-e!)]. (34)
lie may analosously obtain the following formula for &
Q = Q-+ d, sinv 4 d, sin2v 4+ dysin 3v 4 d, sin4v + d, sin 24,
, Q= nx + ¢, i (35)
where

dy = — 2% cosi {1 + _:’6. (8 —565%) —e* (12 + 133*)1},

d,=__%-"-cosi{x-—-"41 (22 — 25%) + €7 (2 + sV }

dy = -°‘8—”- cosi(4—3s%), (36)
d,= cé:‘ cosi(2—s?),
e ® (1 —eMisdcosi

dy = o (1 —e*)?s*cosi,
", =_.‘2’_e=1/7r7pcosz{1 e (G +‘s*)—e'(4—2ss')1}. @7
4, - EXPRESSIONS FOR RECTANGULAR COORDINATES
Fron the third formula (6) we find

V1—1cosw = cos pcos @ —cosisingsinQ,
: (38)

V1T —1sinw = cos sinQ + cos i sinp cos Q.
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That is why we shall have for satellite's rectanrular coordinates
X,y, 2 the following formulas:

xz=VE + c*(cos gcos @ — cos isingsin{),
Y=V +c(cos @sinQ + cos i singcos Q), (39)
z2=_C%.s-sing,

Formulas (3%) may serve for the computation of satellite's rectan-
gular coordinates instead of formulas (3). They ma;ffound to be more praz-
tical, for example, in the case when B is near the unity, that is, in the
case of nearly polar orbits, when the third formula (6) is of little con~
venierce for the calculation of W.

5 = CORRELATION BETWEEN 4y AND ¢

From the equalities (17) and (35) we have

u=(14v)v+ o
Q = pv + Qp, (40)
where @, anc 2 are constants, linked with the constants ¢z, ¢y and cg
by the correlations
Wy = 1,0y — -é"— — ey,
Q=5 —nyey,

while the constants v and W are determined from the formulas
1 v=_"£.. =T
+ Ry B ng
or . . ,
v= _:. (12 —155%) + —27[288—l296s’+10353‘—e’(144+2883’—5105‘)]. (a1)

p=— —;—- cosi — %(6 — 1752 — 24e%%) cos . (42)

Evidently, we may take for the incependent variable ¢ instead of Te.

Let us establish the relationship between  and E. Since

dt = (8 +c*nY)dr,
we have, on the basis of (17)

B+ o
Ny ’

=

dt ,
o (43)
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Let us express the right-hand part of this equality throush v,

We then shall hzove

Btemw 1 -k 3 (1 — gt
= ;{ e b 267 (1 — )y cos 20 +

Ble{l— 3)'h

i = Yy : oy o - W 3
--;-———-————(.1_1._“')s o7 (A + A, cOS 'v-+ Ay coOS v)}, (43)

n-—]/ fm {x —e(1—e)(1—s) +

+2 e (1 —e)(1—) (1 + 11s) —er(l —ss'n}.

where

=— _% (1—€)"+(24 — 965* 4 T5s*), (49)
A= _i_ (8 —13s%),
o= - (68— 1289 + 23— 1159,

x"—_- '5‘(4—532), kz'—_ ‘%:-.

In formula (43) we rejected all the terms which provide at inte-

L

rrotion periodical terms witz anplitudes of the order € and higher.

Interrating (43'), we find

—eV]l—gp__sino__ — A+

1+ecosy

a(t—t) + M,

3 (] — N _Be(l—eyh ;
+e( €%)"1Aq sin2u + 04 s op (B, + B, cos v) siny, (45)
where

Bo=2—135" B =@ —11s), (46)

.l-d-o beinc accentable for tae sixth arbitrary constant in place of ¢y.

Ap=lving the same approach for the solution of the equation (45)
as was done in the work [3], we may express V as a function of t. We
shall forego here the details of operations, and we shall bring forth all
forzulas for the calculation of V as a function of t.

v=0—¢eA, (1 4 ecos0)®sin2(0 + w) —e% (B, + B, cosB) sind,  (47)

where
® = v0 + o,, . (48)
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and ® is determined from the following equations:

i.-]/ 1+e,, £ (
g5 = = g5 (49)

E—esinE=M, (50)
M=n(t—1t)+ M, (51)
= M

n=——r, My=—7""1. (52)

Therefore, the relationship between O and t does not practically
differ from the correlation between the true anomaly and the time in the
Keplerian motion. Krowing ©, we may easily find ¥ by formula (47).

lNote that in deriving the formula (47) we rejected all the period-
ical terms proportional to :,4, and all the terms of higher order. Although
for most of practical problems the precision obtained here is quite suffi-
cient, we shall point out, however, that if a higher precision is required,
we may use the forzulas (133) of [3], where the relationship between ¥ and
t is well established (in [3] the denotation ¥ was used instead of ¥ ).
And V can always be computed by the givem ¥ using the formula

U= ‘\,p + hz sin 2‘\p + h4 sin 4\P. (53)
where
By = — _% es? + ";;’ (2 — 20s® 4 22s* + é’s‘),

h‘= ie‘e‘s‘.
256

The last term in (53) was nearly always rejected, for it has the
order 10"8.

L ]
* *

CONCLUSIONS

In the present work we found all the formulas describing the in-
termediate motion of the satellite, These formulas depend on six arbitrary
constants a, e, = (or i), oo, @, M. ‘hen deriving all the formulas we
conducted the expansions only by vowers of small magnitude 62, but nowhere
did we expand by powers e or s, so that the obtained fermulas are valid
for any eccentricities and orbit inclinations. Wherever we conducted these

expansions, we utilized series converging absolutely for any moments of time.




Note that numerous formulas were derived with a great reserve of preci-

sion, inasmuch as all periodical terms, proportional to 6"’

may, as a rule,
by cuietly dropped.

Assume now that the numerical values of elements a, e, 5, 0, Q) & M,
are known to us (they may be found from observations or éomputed according
to the initial data) and that we are required to compute the coordinates
of the satellite for any moment of time. We shall, first of all, compute
all the constants n, e, v, poy etc... Then we find M by the given t,
using the equation (51). The solution of tke equation (50) will give us E,
after which utilizing formula (49) we shall find ©. Having found the latter
from formula (47), we s%-1" coupute ¥. Then, from correlations (40) we
we shall determine u 2néd Q,

The subsequent coumutations may be conducted according to various

sclrenes, Let us indicate some of them:

1l.- Using the formulas (15), (31) and (35) we shall find ¢. ¥, Q
and then, utilizing the equalities (38), we will be in a position to compute
the rectanpular coordinates of the satellite.

2. -%We shall find ¢ ¢ Q by tke formulas (15), (16) and (35),
After that the ecualities (6) will give us & 1, w, and the formulas (3) —
the rectansular coordinates, |

3.- Knowin~ y, we nay find T from the second equality (17), and
then, making use of tic tables for elliptical functions,. we will be able to
find either ¢, % Q or § n, @, and then x, y, 2 also.

-~ THE END P

Received on 2 iLpril 19564 Chair of Celestial Mechanics

Contract No,HAS=5=~3760 Translated by ANDRE L. BRICHANT

Consultants and Designers, Inc.

Arlin-ton, Virginia on 2k and 25 August 1965




ST~ CM —10 374 [14 pp. 70 cc]

DISTRIBUTION

13.

GODDARD 3PiCZ F.C. NASA HQS OTHER CENTERS
100  CLARK, TOWNSEND ss NEWELL, NAUGLE AKES
110  STROUD SG MITCHELL
600  PIETER SCHARDT ' SONETT 51
610 MEREDITH DUBIN LIBRARY [3]
611  McDONAILD SL LIDDEL
612  HEPPNER FELLOWS IANGIEY
613  KUPPERIAN HIPSHER \
HULNG HOROWITZ %gg ﬁ;’gﬁ;ﬁg
614  LINDSAY, WHITE SH FOSTER BUGLIA
640 HESS [3] M MUELIER QUEIJO
e meEN -1 TAYIOR 185 WEATHERWAX [2]
Gis  SOUIRES MIE  RZFFENSBERGER MS C
SIUTE RR KURZUEG oo ms
630 GI for S§  [5] gﬁﬁ E’i’,ﬁ“ S
252  LISRARY [z3 =1L MARSHALL
26 pemis ATSS SCHWIND [43
5 : ROBBINS SCHMIEDER
WX SWEET WINCH
UCIA
KAULA
REFERENCES

[2].- E. P, AKSENOV, E, A, GREBENIKOV, V.G, DEMIN.- Astronom. Zh. 10, 2, 1963.
[31.- E. Fe AKSIHOV.~ Soobshkcheniya GAISH® No, 137, 1964

® GAISH stands for Gosudarstvennyy Astronomicheskiy Institut imeni Shternberga
(State Astronom.Institute in the name of Sternberg)



